Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Day-Ahead PV Power Forecasting Based on MSTL-TFT (2301.05911v2)

Published 14 Jan 2023 in cs.LG, cs.SY, and eess.SY

Abstract: In recent years, renewable energy resources have accounted for an increasing share of electricity energy.Among them, photovoltaic (PV) power generation has received broad attention due to its economic and environmental benefits.Accurate PV generation forecasts can reduce power dispatch from the grid, thus increasing the supplier's profit in the day-ahead electricity market.The power system of a PV site is affected by solar radiation, PV plant properties and meteorological factors, resulting in uncertainty in its power output.This study used multiple seasonal-trend decomposition using LOESS (MSTL) and temporal fusion transformer (TFT) to perform day-ahead PV prediction on the desert knowledge Australia solar centre (DKASC) dataset.We compare the decomposition algorithms (VMD, EEMD and VMD-EEMD) and prediction models (BP, LSTM and XGBoost, etc.) which are commonly used in PV prediction presently.The results show that the MSTL-TFT method is more accurate than the aforementioned methods, which have noticeable improvement compared to other recent day-ahead PV predictions on desert knowledge Australia solar centre (DKASC).

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube