Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A LiDAR-Inertial-Visual SLAM System with Loop Detection (2301.05604v1)

Published 13 Jan 2023 in cs.RO

Abstract: We have proposed, to the best of our knowledge, the first-of-its-kind LiDAR-Inertial-Visual-Fused simultaneous localization and mapping (SLAM) system with a strong place recognition capacity. Our proposed SLAM system is consist of visual-inertial odometry (VIO) and LiDAR inertial odometry (LIO) subsystems. We propose the LIO subsystem utilizing the measurement from the LiDAR and the inertial sensors to build the local odometry map, and propose the VIO subsystem which takes in the visual information to construct the 2D-3D associated map. Then, we propose an iterative Kalman Filter-based optimization function to optimize the local project-based 2D-to-3D photo-metric error between the projected image pixels and the local 3D points to make the robust 2D-3D alignment. Finally, we have also proposed the back-end pose graph global optimization and the elaborately designed loop closure detection network to improve the accuracy of the whole SLAM system. Extensive experiments deployed on the UGV in complicated real-world circumstances demonstrate that our proposed LiDAR-Visual-Inertial localization system outperforms the current state-of-the-art in terms of accuracy, efficiency, and robustness.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)