Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Quick Minimization of Tardy Processing Time on a Single Machine (2301.05460v2)

Published 13 Jan 2023 in cs.DS

Abstract: We consider the problem of minimizing the total processing time of tardy jobs on a single machine. This is a classical scheduling problem, first considered by [Lawler and Moore 1969], that also generalizes the Subset Sum problem. Recently, it was shown that this problem can be solved efficiently by computing $(\max,\min)$-skewed-convolutions. The running time of the resulting algorithm is equivalent, up to logarithmic factors, to the time it takes to compute a $(\max,\min)$-skewed-convolution of two vectors of integers whose sum is $O(P)$, where $P$ is the sum of the jobs' processing times. We further improve the running time of the minimum tardy processing time computation by introducing a job ``bundling'' technique and achieve a $\tilde{O}\left(P{2-1/\alpha}\right)$ running time, where $\tilde{O}\left(P\alpha\right)$ is the running time of a $(\max,\min)$-skewed-convolution of vectors of size $P$. This results in a $\tilde{O}\left(P{7/5}\right)$ time algorithm for tardy processing time minimization, an improvement over the previously known $\tilde{O}\left(P{5/3}\right)$ time algorithm.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube