Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Security-Aware Approximate Spiking Neural Networks (2301.05264v1)

Published 12 Jan 2023 in cs.CR, cs.AI, and cs.ET

Abstract: Deep Neural Networks (DNNs) and Spiking Neural Networks (SNNs) are both known for their susceptibility to adversarial attacks. Therefore, researchers in the recent past have extensively studied the robustness and defense of DNNs and SNNs under adversarial attacks. Compared to accurate SNNs (AccSNN), approximate SNNs (AxSNNs) are known to be up to 4X more energy-efficient for ultra-low power applications. Unfortunately, the robustness of AxSNNs under adversarial attacks is yet unexplored. In this paper, we first extensively analyze the robustness of AxSNNs with different structural parameters and approximation levels under two gradient-based and two neuromorphic attacks. Then, we propose two novel defense methods, i.e., precision scaling and approximate quantization-aware filtering (AQF), for securing AxSNNs. We evaluated the effectiveness of these two defense methods using both static and neuromorphic datasets. Our results demonstrate that AxSNNs are more prone to adversarial attacks than AccSNNs, but precision scaling and AQF significantly improve the robustness of AxSNNs. For instance, a PGD attack on AxSNN results in a 72\% accuracy loss compared to AccSNN without any attack, whereas the same attack on the precision-scaled AxSNN leads to only a 17\% accuracy loss in the static MNIST dataset (4X robustness improvement). Similarly, a Sparse Attack on AxSNN leads to a 77\% accuracy loss when compared to AccSNN without any attack, whereas the same attack on an AxSNN with AQF leads to only a 2\% accuracy loss in the neuromorphic DVS128 Gesture dataset (38X robustness improvement).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.