Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Graph Laplacian for Semi-Supervised Learning (2301.04956v2)

Published 12 Jan 2023 in cs.CV, cs.LG, and eess.SP

Abstract: Semi-supervised learning is highly useful in common scenarios where labeled data is scarce but unlabeled data is abundant. The graph (or nonlocal) Laplacian is a fundamental smoothing operator for solving various learning tasks. For unsupervised clustering, a spectral embedding is often used, based on graph-Laplacian eigenvectors. For semi-supervised problems, the common approach is to solve a constrained optimization problem, regularized by a Dirichlet energy, based on the graph-Laplacian. However, as supervision decreases, Dirichlet optimization becomes suboptimal. We therefore would like to obtain a smooth transition between unsupervised clustering and low-supervised graph-based classification. In this paper, we propose a new type of graph-Laplacian which is adapted for Semi-Supervised Learning (SSL) problems. It is based on both density and contrastive measures and allows the encoding of the labeled data directly in the operator. Thus, we can perform successfully semi-supervised learning using spectral clustering. The benefits of our approach are illustrated for several SSL problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.