Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Stretched and measured neural predictions of complex network dynamics (2301.04900v4)

Published 12 Jan 2023 in cond-mat.stat-mech, cs.LG, cs.SI, and stat.ML

Abstract: Differential equations are a ubiquitous tool to study dynamics, ranging from physical systems to complex systems, where a large number of agents interact through a graph with non-trivial topological features. Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems, especially in complex systems that lack explicit first principles. A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations. Specifically for the latter task, however, deploying deep learning models in unfamiliar settings - such as predicting dynamics in unobserved state space regions or on novel graphs - can lead to spurious results. Focusing on complex systems whose dynamics are described with a system of first-order differential equations coupled through a graph, we show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible. However, achieving this advanced level of generalization requires neural network models to conform to fundamental assumptions about the dynamical model. Additionally, we propose a statistical significance test to assess prediction quality during inference, enabling the identification of a neural network's confidence level in its predictions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.