Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SACDNet: Towards Early Type 2 Diabetes Prediction with Uncertainty for Electronic Health Records (2301.04844v2)

Published 12 Jan 2023 in cs.LG

Abstract: Type 2 diabetes mellitus (T2DM) is one of the most common diseases and a leading cause of death. The problem of early diagnosis of T2DM is challenging and necessary to prevent serious complications. This study proposes a novel neural network architecture for early T2DM prediction using multi-headed self-attention and dense layers to extract features from historic diagnoses, patient vitals, and demographics. The proposed technique is called the Self-Attention for Comorbid Disease Net (SACDNet), achieving an accuracy of 89.3% and an F1-Score of 89.1%, having a 1.6% increased accuracy and 1.3% increased f1-score compared to the baseline techniques. Monte Carlo (MC) Dropout is applied to the SACDNet to get a bayesian approximation. A T2DM prediction framework based on the MC Dropout SACDNet is proposed to quantize the uncertainty associated with the predictions. A T2DM prediction dataset is also built as part of this study which is based on real-world routine Electronic Health Record (EHR) data comprising 4,124 diabetic and 181,767 non-diabetic examples, collected from 295 different EHR systems running in different parts of the United States of America. This dataset is further used to evaluate 7 different machine learning and 3 deep learning-based models. Finally, a detailed analysis of the fairness of every technique against different patient demographic groups is performed to validate the unbiased generalization of the techniques and the diversity of the data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.