Fast Persistent Homology Computation for Functions on $\mathbb{R}$ (2301.04745v2)
Abstract: 0-dimensional persistent homology is known, from a computational point of view, as the easy case. Indeed, given a list of $n$ edges in non-decreasing order of filtration value, one only needs a union-find data structure to keep track of the connected components and we get the persistence diagram in time $O(n\alpha(n))$. The running time is thus usually dominated by sorting the edges in $\Theta(n\log(n))$. A little-known fact is that, in the particularly simple case of studying the sublevel sets of a piecewise-linear function on $\mathbb{R}$ or $\mathbb{S}1$, persistence can actually be computed in linear time. This note presents a simple algorithm that achieves this complexity and an extension to image persistence. An implementation is available in Gudhi.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.