Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LinkGAN: Linking GAN Latents to Pixels for Controllable Image Synthesis (2301.04604v2)

Published 11 Jan 2023 in cs.CV

Abstract: This work presents an easy-to-use regularizer for GAN training, which helps explicitly link some axes of the latent space to a set of pixels in the synthesized image. Establishing such a connection facilitates a more convenient local control of GAN generation, where users can alter the image content only within a spatial area simply by partially resampling the latent code. Experimental results confirm four appealing properties of our regularizer, which we call LinkGAN. (1) The latent-pixel linkage is applicable to either a fixed region (\textit{i.e.}, same for all instances) or a particular semantic category (i.e., varying across instances), like the sky. (2) Two or multiple regions can be independently linked to different latent axes, which further supports joint control. (3) Our regularizer can improve the spatial controllability of both 2D and 3D-aware GAN models, barely sacrificing the synthesis performance. (4) The models trained with our regularizer are compatible with GAN inversion techniques and maintain editability on real images.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.