Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deteksi Depresi dan Kecemasan Pengguna Twitter Menggunakan Bidirectional LSTM (2301.04521v1)

Published 11 Jan 2023 in cs.CL

Abstract: The most common mental disorders experienced by a person in daily life are depression and anxiety. Social stigma makes people with depression and anxiety neglected by their surroundings. Therefore, they turn to social media like Twitter for support. Detecting users with potential depression and anxiety disorders through textual data is not easy because they do not explicitly discuss their mental state. It takes a model that can identify potential users who experience depression and anxiety on textual data to get treatment earlier. Text classification techniques can achieve this. One approach that can be used is LSTM as an RNN architecture development in dealing with vanishing gradient problems. Standard LSTM does not capture enough information because it can only read sentences from one direction. Meanwhile, Bidirectional LSTM (BiLSTM) is a two-way LSTM that can capture information without ignoring the context and meaning of a sentence. The proposed BiLSTM model is higher than all traditional machine learning models and standard LSTMs. Based on the test results, the highest accuracy obtained by BiLSTM reached 94.12%. This study has succeeded in developing a model for the detection of depression and anxiety in Twitter users.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.