Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed Sparse Linear Regression under Communication Constraints (2301.04022v1)

Published 9 Jan 2023 in cs.LG, math.ST, and stat.TH

Abstract: In multiple domains, statistical tasks are performed in distributed settings, with data split among several end machines that are connected to a fusion center. In various applications, the end machines have limited bandwidth and power, and thus a tight communication budget. In this work we focus on distributed learning of a sparse linear regression model, under severe communication constraints. We propose several two round distributed schemes, whose communication per machine is sublinear in the data dimension. In our schemes, individual machines compute debiased lasso estimators, but send to the fusion center only very few values. On the theoretical front, we analyze one of these schemes and prove that with high probability it achieves exact support recovery at low signal to noise ratios, where individual machines fail to recover the support. We show in simulations that our scheme works as well as, and in some cases better, than more communication intensive approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.