Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inside the Black Box: Detecting and Mitigating Algorithmic Bias across Racialized Groups in College Student-Success Prediction (2301.03784v2)

Published 10 Jan 2023 in cs.CY

Abstract: Colleges and universities are increasingly turning to algorithms that predict college-student success to inform various decisions, including those related to admissions, budgeting, and student-success interventions. Because predictive algorithms rely on historical data, they capture societal injustices, including racism. In this study, we examine how the accuracy of college student success predictions differs between racialized groups, signaling algorithmic bias. We also evaluate the utility of leading bias-mitigating techniques in addressing this bias. Using nationally representative data from the Education Longitudinal Study of 2002 and various machine learning modeling approaches, we demonstrate how models incorporating commonly used features to predict college-student success are less accurate when predicting success for racially minoritized students. Common approaches to mitigating algorithmic bias are generally ineffective at eliminating disparities in prediction outcomes and accuracy between racialized groups.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube