Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SiFall: Practical Online Fall Detection with RF Sensing (2301.03773v2)

Published 10 Jan 2023 in cs.HC

Abstract: Falls present a significant global public health challenge, especially in today's aging society, underscoring the importance of developing an effective fall detection system. Non-invasive radio-frequency (RF) based fall detection has garnered substantial attention due to its wide coverage and privacy-preserving nature. Existing RF-based fall detection systems approach falls as an activity classification problem, assuming that human falls introduce reproducible patterns to the RF signals. However, we argue that falls are inherently accidental, making their impact uncontrollable and unforeseeable. We propose a fundamentally different approach to fall detection by shifting the focus from directly identifying hard-to-quantify falls to recognizing normal, repeatable human activities, thus treating falls as abnormal activities outside the normal activity distribution. We introduce a self-supervised incremental learning system incorporating FallNet, a deep neural network that employs unsupervised learning techniques. Our real-time fall detection system prototype leverages WiFi Channel State Information (CSI) sensing data and has been extensively tested with 16 human subjects.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)