Papers
Topics
Authors
Recent
2000 character limit reached

Sharp preasymptotic error bounds for the Helmholtz $h$-FEM (2301.03574v3)

Published 9 Jan 2023 in math.NA and cs.NA

Abstract: In the analysis of the $h$-version of the finite-element method (FEM), with fixed polynomial degree $p$, applied to the Helmholtz equation with wavenumber $k\gg 1$, the $\textit{asymptotic regime}$ is when $(hk)p C_{\rm sol}$ is sufficiently small and the sequence of Galerkin solutions are quasioptimal; here $C_{\rm sol}$ is the $L2 \to L2$ norm of the Helmholtz solution operator, with $C_{\rm sol} \sim k$ for nontrapping problems. In the $\textit{preasymptotic regime}$, one expects that if $(hk){2p}C_{\rm sol}$ is sufficiently small, then (for physical data) the relative error of the Galerkin solution is controllably small. In this paper, we prove the natural error bounds in the preasymptotic regime for the variable-coefficient Helmholtz equation in the exterior of a Dirichlet, or Neumann, or penetrable obstacle (or combinations of these) and with the radiation condition $\textit{either}$ realised exactly using the Dirichlet-to-Neumann map on the boundary of a ball $\textit{or}$ approximated either by a radial perfectly-matched layer (PML) or an impedance boundary condition. Previously, such bounds for $p>1$ were only available for Dirichlet obstacles with the radiation condition approximated by an impedance boundary condition. Our result is obtained via a novel generalisation of the "elliptic-projection" argument (the argument used to obtain the result for $p=1$) which can be applied to a wide variety of abstract Helmholtz-type problems.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube