Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Modal and Multi-Resolution Data Fusion for High-Resolution Cloud Removal: A Novel Baseline and Benchmark (2301.03432v2)

Published 9 Jan 2023 in cs.CV

Abstract: Cloud removal is a significant and challenging problem in remote sensing, and in recent years, there have been notable advancements in this area. However, two major issues remain hindering the development of cloud removal: the unavailability of high-resolution imagery for existing datasets and the absence of evaluation regarding the semantic meaningfulness of the generated structures. In this paper, we introduce M3R-CR, a benchmark dataset for high-resolution Cloud Removal with Multi-Modal and Multi-Resolution data fusion. With this dataset, we consider the problem of cloud removal in high-resolution optical remote sensing imagery by integrating multi-modal and multi-resolution information. In this context, we have to take into account the alignment errors caused by the multi-resolution nature, along with the more pronounced misalignment issues in high-resolution images due to inherent imaging mechanism differences and other factors. Existing multi-modal data fusion based methods, which assume the image pairs are aligned accurately at pixel-level, are thus not appropriate for this problem. To this end, we design a new baseline named Align-CR to perform the low-resolution SAR image guided high-resolution optical image cloud removal. It gradually warps and fuses the features of the multi-modal and multi-resolution data during the reconstruction process, effectively mitigating concerns associated with misalignment. In the experiments, we evaluate the performance of cloud removal by analyzing the quality of visually pleasing textures using image reconstruction metrics and further analyze the generation of semantically meaningful structures using a well-established semantic segmentation task. The proposed Align-CR method is superior to other baseline methods in both areas.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube