Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Open World NeRF-Based SLAM (2301.03102v4)

Published 8 Jan 2023 in cs.RO

Abstract: Neural Radiance Fields (NeRFs) offer versatility and robustness in map representations for Simultaneous Localization and Mapping (SLAM) tasks. This paper extends NICE-SLAM, a recent state-of-the-art NeRF-based SLAM algorithm capable of producing high quality NeRF maps. However, depending on the hardware used, the required number of iterations to produce these maps often makes NICE-SLAM run at less than real time. Additionally, the estimated trajectories fail to be competitive with classical SLAM approaches. Finally, NICE-SLAM requires a grid covering the considered environment to be defined prior to runtime, making it difficult to extend into previously unseen scenes. This paper seeks to make NICE-SLAM more open-world-capable by improving the robustness and tracking accuracy, and generalizing the map representation to handle unconstrained environments. This is done by improving measurement uncertainty handling, incorporating motion information, and modelling the map as having an explicit foreground and background. It is shown that these changes are able to improve tracking accuracy by 85% to 97% depending on the available resources, while also improving mapping in environments with visual information extending outside of the predefined grid.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.