Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Network Sparsification via Degree- and Subgraph-based Edge Sampling (2301.03032v2)

Published 8 Jan 2023 in cs.SI

Abstract: Network (or graph) sparsification compresses a graph by removing inessential edges. By reducing the data volume, it accelerates or even facilitates many downstream analyses. Still, the accuracy of many sparsification methods, with filtering-based edge sampling being the most typical one, heavily relies on an appropriate definition of edge importance. Instead, we propose a different perspective with a generalized local-property-based sampling method, which preserves (scaled) local \emph{node} characteristics. Apart from degrees, these local node characteristics we use are the expected (scaled) number of wedges and triangles a node belongs to. Through such a preservation, main complex structural properties are preserved implicitly. We adapt a game-theoretic framework from uncertain graph sampling by including a threshold for faster convergence (at least $4$ times faster empirically) to approximate solutions. Extensive experimental studies on functional climate networks show the effectiveness of this method in preserving macroscopic to mesoscopic and microscopic network structural properties.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.