Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

InPars-Light: Cost-Effective Unsupervised Training of Efficient Rankers (2301.02998v2)

Published 8 Jan 2023 in cs.IR, cs.AI, and cs.CL

Abstract: We carried out a reproducibility study of InPars, which is a method for unsupervised training of neural rankers (Bonifacio et al., 2022). As a by-product, we developed InPars-light, which is a simple-yet-effective modification of InPars. Unlike InPars, InPars-light uses 7x-100x smaller ranking models and only a freely available LLM BLOOM, which -- as we found out -- produced more accurate rankers compared to a proprietary GPT-3 model. On all five English retrieval collections (used in the original InPars study) we obtained substantial (7%-30%) and statistically significant improvements over BM25 (in nDCG and MRR) using only a 30M parameter six-layer MiniLM-30M ranker and a single three-shot prompt. In contrast, in the InPars study only a 100x larger monoT5-3B model consistently outperformed BM25, whereas their smaller monoT5-220M model (which is still 7x larger than our MiniLM ranker) outperformed BM25 only on MS MARCO and TREC DL 2020. In the same three-shot prompting scenario, our 435M parameter DeBERTA v3 ranker was at par with the 7x larger monoT5-3B (average gain over BM25 of 1.3 vs 1.32): In fact, on three out of five datasets, DeBERTA slightly outperformed monoT5-3B. Finally, these good results were achieved by re-ranking only 100 candidate documents compared to 1000 used by Bonifacio et al. (2022). We believe that InPars-light is the first truly cost-effective prompt-based unsupervised recipe to train and deploy neural ranking models that outperform BM25. Our code and data is publicly available. https://github.com/searchivarius/inpars_light/

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube