Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SCOREH+: A High-Order Node Proximity Spectral Clustering on Ratios-of-Eigenvectors Algorithm for Community Detection (2301.02885v2)

Published 7 Jan 2023 in cs.SI

Abstract: The research on complex networks has achieved significant progress in revealing the mesoscopic features of networks. Community detection is an important aspect of understanding real-world complex systems. We present in this paper a High-order node proximity Spectral Clustering on Ratios-of-Eigenvectors (SCOREH+) algorithm for locating communities in complex networks. The algorithm improves SCORE and SCORE+ and preserves high-order transitivity information of the network affinity matrix. We optimize the high-order proximity matrix from the initial affinity matrix using the Radial Basis Functions (RBFs) and Katz index. In addition to the optimization of the Laplacian matrix, we implement a procedure that joins an additional eigenvector (the $(k+1){th}$ leading eigenvector) to the spectrum domain for clustering if the network is considered to be a "weak signal" graph. The algorithm has been successfully applied to both real-world and synthetic data sets. The proposed algorithm is compared with state-of-art algorithms, such as ASE, Louvain, Fast-Greedy, Spectral Clustering (SC), SCORE, and SCORE+. To demonstrate the high efficacy of the proposed method, we conducted comparison experiments on eleven real-world networks and a number of synthetic networks with noise. The experimental results in most of these networks demonstrate that SCOREH+ outperforms the baseline methods. Moreover, by tuning the RBFs and their shaping parameters, we may generate state-of-the-art community structures on all real-world networks and even on noisy synthetic networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.