Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Systems for Parallel and Distributed Large-Model Deep Learning Training (2301.02691v1)

Published 6 Jan 2023 in cs.DC and cs.LG

Abstract: Deep learning (DL) has transformed applications in a variety of domains, including computer vision, natural language processing, and tabular data analysis. The search for improved DL model accuracy has led practitioners to explore increasingly large neural architectures, with some recent Transformer models spanning hundreds of billions of learnable parameters. These designs have introduced new scale-driven systems challenges for the DL space, such as memory bottlenecks, poor runtime efficiency, and high costs of model development. Efforts to address these issues have explored techniques such as parallelization of neural architectures, spilling data across the memory hierarchy, and memory-efficient data representations. This survey will explore the large-model training systems landscape, highlighting key challenges and the various techniques that have been used to address them.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube