Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Grokking modular arithmetic (2301.02679v1)

Published 6 Jan 2023 in cs.LG and cond-mat.dis-nn

Abstract: We present a simple neural network that can learn modular arithmetic tasks and exhibits a sudden jump in generalization known as ``grokking''. Concretely, we present (i) fully-connected two-layer networks that exhibit grokking on various modular arithmetic tasks under vanilla gradient descent with the MSE loss function in the absence of any regularization; (ii) evidence that grokking modular arithmetic corresponds to learning specific feature maps whose structure is determined by the task; (iii) analytic expressions for the weights -- and thus for the feature maps -- that solve a large class of modular arithmetic tasks; and (iv) evidence that these feature maps are also found by vanilla gradient descent as well as AdamW, thereby establishing complete interpretability of the representations learnt by the network.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)