Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neuro-DynaStress: Predicting Dynamic Stress Distributions in Structural Components (2301.02580v1)

Published 19 Dec 2022 in physics.geo-ph, cs.CE, and cs.LG

Abstract: Structural components are typically exposed to dynamic loading, such as earthquakes, wind, and explosions. Structural engineers should be able to conduct real-time analysis in the aftermath or during extreme disaster events requiring immediate corrections to avoid fatal failures. As a result, it is crucial to predict dynamic stress distributions during highly disruptive events in real-time. Currently available high-fidelity methods, such as Finite Element Models (FEMs), suffer from their inherent high complexity and are computationally prohibitive. Therefore, to reduce computational cost while preserving accuracy, a deep learning model, Neuro-DynaStress, is proposed to predict the entire sequence of stress distribution based on finite element simulations using a partial differential equation (PDE) solver. The model was designed and trained to use the geometry, boundary conditions and sequence of loads as input and predict the sequences of high-resolution stress contours. The performance of the proposed framework is compared to finite element simulations using a PDE solver.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.