Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain Adaptation for Breast MRI Segmentation in Small Datasets (2301.02554v2)

Published 4 Jan 2023 in q-bio.QM and cs.LG

Abstract: Deep learning (DL) applied to breast tissue segmentation in magnetic resonance imaging (MRI) has received increased attention in the last decade, however, the domain shift which arises from different vendors, acquisition protocols, and biological heterogeneity, remains an important but challenging obstacle on the path towards clinical implementation. In this paper, we propose a novel Multi-level Semantic-guided Contrastive Domain Adaptation (MSCDA) framework to address this issue in an unsupervised manner. Our approach incorporates self-training with contrastive learning to align feature representations between domains. In particular, we extend the contrastive loss by incorporating pixel-to-pixel, pixel-to-centroid, and centroid-to-centroid contrasts to better exploit the underlying semantic information of the image at different levels. To resolve the data imbalance problem, we utilize a category-wise cross-domain sampling strategy to sample anchors from target images and build a hybrid memory bank to store samples from source images. We have validated MSCDA with a challenging task of cross-domain breast MRI segmentation between datasets of healthy volunteers and invasive breast cancer patients. Extensive experiments show that MSCDA effectively improves the model's feature alignment capabilities between domains, outperforming state-of-the-art methods. Furthermore, the framework is shown to be label-efficient, achieving good performance with a smaller source dataset. The code is publicly available at \url{https://github.com/ShengKuangCN/MSCDA}.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub