Papers
Topics
Authors
Recent
2000 character limit reached

Extremal Independent Set Reconfiguration (2301.02020v1)

Published 5 Jan 2023 in math.CO and cs.DM

Abstract: The independent set reconfiguration problem asks whether one can transform one given independent set of a graph into another, by changing vertices one by one in such a way the intermediate sets remain independent. Extremal problems on independent sets are widely studied: for example, it is well known that an $n$-vertex graph has at most $3{n/3}$ maximum independent sets (and this is tight). This paper investigates the asymptotic behavior of maximum possible length of a shortest reconfiguration sequence for independent sets of size $k$ among all $n$-vertex graphs. We give a tight bound for $k=2$. We also provide a subquadratic upper bound (using the hypergraph removal lemma) as well as an almost tight construction for $k=3$. We generalize our results for larger values of $k$ by proving an $n{2\lfloor k/3 \rfloor}$ lower bound.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.