Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GUAP: Graph Universal Attack Through Adversarial Patching (2301.01731v1)

Published 4 Jan 2023 in cs.LG and cs.CR

Abstract: Graph neural networks (GNNs) are a class of effective deep learning models for node classification tasks; yet their predictive capability may be severely compromised under adversarially designed unnoticeable perturbations to the graph structure and/or node data. Most of the current work on graph adversarial attacks aims at lowering the overall prediction accuracy, but we argue that the resulting abnormal model performance may catch attention easily and invite quick counterattack. Moreover, attacks through modification of existing graph data may be hard to conduct if good security protocols are implemented. In this work, we consider an easier attack harder to be noticed, through adversarially patching the graph with new nodes and edges. The attack is universal: it targets a single node each time and flips its connection to the same set of patch nodes. The attack is unnoticeable: it does not modify the predictions of nodes other than the target. We develop an algorithm, named GUAP, that achieves high attack success rate but meanwhile preserves the prediction accuracy. GUAP is fast to train by employing a sampling strategy. We demonstrate that a 5% sampling in each epoch yields 20x speedup in training, with only a slight degradation in attack performance. Additionally, we show that the adversarial patch trained with the graph convolutional network transfers well to other GNNs, such as the graph attention network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiao Zang (6 papers)
  2. Jie Chen (602 papers)
  3. Bo Yuan (151 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.