Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Explainable Land Cover Mapping: a Counterfactual-based Strategy (2301.01520v2)

Published 4 Jan 2023 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Counterfactual explanations are an emerging tool to enhance interpretability of deep learning models. Given a sample, these methods seek to find and display to the user similar samples across the decision boundary. In this paper, we propose a generative adversarial counterfactual approach for satellite image time series in a multi-class setting for the land cover classification task. One of the distinctive features of the proposed approach is the lack of prior assumption on the targeted class for a given counterfactual explanation. This inherent flexibility allows for the discovery of interesting information on the relationship between land cover classes. The other feature consists of encouraging the counterfactual to differ from the original sample only in a small and compact temporal segment. These time-contiguous perturbations allow for a much sparser and, thus, interpretable solution. Furthermore, plausibility/realism of the generated counterfactual explanations is enforced via the proposed adversarial learning strategy.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.