Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

UAV aided Metaverse over Wireless Communications: A Reinforcement Learning Approach (2301.01474v1)

Published 4 Jan 2023 in eess.SY, cs.LG, and cs.SY

Abstract: Metaverse is expected to create a virtual world closely connected with reality to provide users with immersive experience with the support of 5G high data rate communication technique. A huge amount of data in physical world needs to be synchronized to the virtual world to provide immersive experience for users, and there will be higher requirements on coverage to include more users into Metaverse. However, 5G signal suffers severe attenuation, which makes it more expensive to maintain the same coverage. Unmanned aerial vehicle (UAV) is a promising candidate technique for future implementation of Metaverse as a low-cost and high-mobility platform for communication devices. In this paper, we propose a proximal policy optimization (PPO) based double-agent cooperative reinforcement learning method for channel allocation and trajectory control of UAV to collect and synchronize data from the physical world to the virtual world, and expand the coverage of Metaverse services economically. Simulation results show that our proposed method is able to achieve better performance compared to the benchmark approaches.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.