Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Online Learning of Smooth Functions (2301.01434v1)

Published 4 Jan 2023 in cs.LG, cs.DM, and stat.ML

Abstract: In this paper, we study the online learning of real-valued functions where the hidden function is known to have certain smoothness properties. Specifically, for $q \ge 1$, let $\mathcal F_q$ be the class of absolutely continuous functions $f: [0,1] \to \mathbb R$ such that $|f'|q \le 1$. For $q \ge 1$ and $d \in \mathbb Z+$, let $\mathcal F{q,d}$ be the class of functions $f: [0,1]d \to \mathbb R$ such that any function $g: [0,1] \to \mathbb R$ formed by fixing all but one parameter of $f$ is in $\mathcal F_q$. For any class of real-valued functions $\mathcal F$ and $p>0$, let $\text{opt}p(\mathcal F)$ be the best upper bound on the sum of $p{\text{th}}$ powers of absolute prediction errors that a learner can guarantee in the worst case. In the single-variable setup, we find new bounds for $\text{opt}_p(\mathcal F_q)$ that are sharp up to a constant factor. We show for all $\varepsilon \in (0, 1)$ that $\text{opt}{1+\varepsilon}(\mathcal{F}{\infty}) = \Theta(\varepsilon{-\frac{1}{2}})$ and $\text{opt}{1+\varepsilon}(\mathcal{F}q) = \Theta(\varepsilon{-\frac{1}{2}})$ for all $q \ge 2$. We also show for $\varepsilon \in (0,1)$ that $\text{opt}_2(\mathcal F{1+\varepsilon})=\Theta(\varepsilon{-1})$. In addition, we obtain new exact results by proving that $\text{opt}p(\mathcal F_q)=1$ for $q \in (1,2)$ and $p \ge 2+\frac{1}{q-1}$. In the multi-variable setup, we establish inequalities relating $\text{opt}_p(\mathcal F{q,d})$ to $\text{opt}p(\mathcal F_q)$ and show that $\text{opt}_p(\mathcal F{\infty,d})$ is infinite when $p<d$ and finite when $p>d$. We also obtain sharp bounds on learning $\mathcal F_{\infty,d}$ for $p < d$ when the number of trials is bounded.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube