Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Towards the Identifiability in Noisy Label Learning: A Multinomial Mixture Approach (2301.01405v2)

Published 4 Jan 2023 in cs.LG

Abstract: Learning from noisy labels (LNL) plays a crucial role in deep learning. The most promising LNL methods rely on identifying clean-label samples from a dataset with noisy annotations. Such an identification is challenging because the conventional LNL problem, which assumes a single noisy label per instance, is non-identifiable, i.e., clean labels cannot be estimated theoretically without additional heuristics. In this paper, we aim to formally investigate this identifiability issue using multinomial mixture models to determine the constraints that make the problem identifiable. Specifically, we discover that the LNL problem becomes identifiable if there are at least $2C - 1$ noisy labels per instance, where $C$ is the number of classes. To meet this requirement without relying on additional $2C - 2$ manual annotations per instance, we propose a method that automatically generates additional noisy labels by estimating the noisy label distribution based on nearest neighbours. These additional noisy labels enable us to apply the Expectation-Maximisation algorithm to estimate the posterior probabilities of clean labels, which are then used to train the model of interest. We empirically demonstrate that our proposed method is capable of estimating clean labels without any heuristics in several label noise benchmarks, including synthetic, web-controlled, and real-world label noises. Furthermore, our method performs competitively with many state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.