Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Modeling the Rhythm from Lyrics for Melody Generation of Pop Song (2301.01361v1)

Published 3 Jan 2023 in eess.AS and cs.SD

Abstract: Creating a pop song melody according to pre-written lyrics is a typical practice for composers. A computational model of how lyrics are set as melodies is important for automatic composition systems, but an end-to-end lyric-to-melody model would require enormous amounts of paired training data. To mitigate the data constraints, we adopt a two-stage approach, dividing the task into lyric-to-rhythm and rhythm-to-melody modules. However, the lyric-to-rhythm task is still challenging due to its multimodality. In this paper, we propose a novel lyric-to-rhythm framework that includes part-of-speech tags to achieve better text setting, and a Transformer architecture designed to model long-term syllable-to-note associations. For the rhythm-to-melody task, we adapt a proven chord-conditioned melody Transformer, which has achieved state-of-the-art results. Experiments for Chinese lyric-to-melody generation show that the proposed framework is able to model key characteristics of rhythm and pitch distributions in the dataset, and in a subjective evaluation, the melodies generated by our system were rated as similar to or better than those of a state-of-the-art alternative.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.