Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Explainability and Robustness of Deep Visual Classification Models (2301.01343v1)

Published 3 Jan 2023 in cs.CV

Abstract: In the computer vision community, Convolutional Neural Networks (CNNs), first proposed in the 1980's, have become the standard visual classification model. Recently, as alternatives to CNNs, Capsule Networks (CapsNets) and Vision Transformers (ViTs) have been proposed. CapsNets, which were inspired by the information processing of the human brain, are considered to have more inductive bias than CNNs, whereas ViTs are considered to have less inductive bias than CNNs. All three classification models have received great attention since they can serve as backbones for various downstream tasks. However, these models are far from being perfect. As pointed out by the community, there are two weaknesses in standard Deep Neural Networks (DNNs). One of the limitations of DNNs is the lack of explainability. Even though they can achieve or surpass human expert performance in the image classification task, the DNN-based decisions are difficult to understand. In many real-world applications, however, individual decisions need to be explained. The other limitation of DNNs is adversarial vulnerability. Concretely, the small and imperceptible perturbations of inputs can mislead DNNs. The vulnerability of deep neural networks poses challenges to current visual classification models. The potential threats thereof can lead to unacceptable consequences. Besides, studying model adversarial vulnerability can lead to a better understanding of the underlying models. Our research aims to address the two limitations of DNNs. Specifically, we focus on deep visual classification models, especially the core building parts of each classification model, e.g. dynamic routing in CapsNets and self-attention module in ViTs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.