Decentralized Gradient Tracking with Local Steps (2301.01313v1)
Abstract: Gradient tracking (GT) is an algorithm designed for solving decentralized optimization problems over a network (such as training a machine learning model). A key feature of GT is a tracking mechanism that allows to overcome data heterogeneity between nodes. We develop a novel decentralized tracking mechanism, $K$-GT, that enables communication-efficient local updates in GT while inheriting the data-independence property of GT. We prove a convergence rate for $K$-GT on smooth non-convex functions and prove that it reduces the communication overhead asymptotically by a linear factor $K$, where $K$ denotes the number of local steps. We illustrate the robustness and effectiveness of this heterogeneity correction on convex and non-convex benchmark problems and on a non-convex neural network training task with the MNIST dataset.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.