Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Invalidator: Automated Patch Correctness Assessment via Semantic and Syntactic Reasoning (2301.01113v2)

Published 3 Jan 2023 in cs.SE and cs.LG

Abstract: Automated program repair (APR) faces the challenge of test overfitting, where generated patches pass validation tests but fail to generalize. Existing methods for patch assessment involve generating new tests or manual inspection, which can be time-consuming or biased. In this paper, we propose a novel technique, INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR leverages program invariants to reason about program semantics while also capturing program syntax through language semantics learned from a large code corpus using a pre-trained LLM. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that an APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains erroneous behaviors from the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is threefold. First, INVALIDATOR leverages both semantic and syntactic reasoning to enhance its discriminative capability. Second, INVALIDATOR does not require new test cases to be generated, but instead only relies on the current test suite and uses invariant inference to generalize program behaviors. Third, INVALIDATOR is fully automated. Experimental results demonstrate that INVALIDATOR outperforms existing methods in terms of Accuracy and F-measure, correctly identifying 79% of overfitting patches and detecting 23% more overfitting patches than the best baseline.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.