Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hardware Abstractions and Hardware Mechanisms to Support Multi-Task Execution on Coarse-Grained Reconfigurable Arrays (2301.00861v1)

Published 2 Jan 2023 in cs.AR

Abstract: Domain-specific accelerators are used in various computing systems ranging from edge devices to data centers. Coarse-grained reconfigurable arrays (CGRAs) represent an architectural midpoint between the flexibility of an FPGA and the efficiency of an ASIC and are a promising candidate for servicing multi-tasked workloads within an application domain. Unfortunately, scheduling multiple tasks onto a CGRA is challenging. CGRAs lack abstractions that capture hardware resources, leaving workload schedulers unable to reason about performance, energy, and utilization for different schedules. This work first proposes a CGRA architecture that can flexibly partition key resources, including the global buffer memory capacity, the global buffer memory bandwidth, and the compute resources. Partitioned resources serve as hardware abstractions that decouple compilation and resource allocation. The compiler uses these abstractions for coarse-grained resource mapping, and the scheduler uses them for flexible resource allocation at run time. We then propose two hardware mechanisms to support multi-task execution. A flexible-shape execution region increases the overall resource utilization by mapping multiple tasks with different resource requirements. Dynamic partial reconfiguration (DPR) enables a CGRA to update the hardware configuration as the scheduler makes decisions rapidly. We show that our abstraction can help automatic and efficient scheduling of multi-tasked workloads onto our target CGRA with high utilization, resulting in 1.05x-1.24x higher throughput and a 23-28% lower latency in a multi-tasked cloud workload and 60.8% reduced latency in an autonomous system workload when compared to a baseline CGRA running single tasks at a time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube