Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Addressing the Selection Bias in Voice Assistance: Training Voice Assistance Model in Python with Equal Data Selection (2301.00646v1)

Published 20 Dec 2022 in eess.AS, cs.MA, cs.RO, and cs.SD

Abstract: In recent times, voice assistants have become a part of our day-to-day lives, allowing information retrieval by voice synthesis, voice recognition, and natural language processing. These voice assistants can be found in many modern-day devices such as Apple, Amazon, Google, and Samsung. This project is primarily focused on Virtual Assistance in Natural Language Processing. Natural Language Processing is a form of AI that helps machines understand people and create feedback loops. This project will use deep learning to create a Voice Recognizer and use Commonvoice and data collected from the local community for model training using Google Colaboratory. After recognizing a command, the AI assistant will be able to perform the most suitable actions and then give a response. The motivation for this project comes from the race and gender bias that exists in many virtual assistants. The computer industry is primarily dominated by the male gender, and because of this, many of the products produced do not regard women. This bias has an impact on natural language processing. This project will be utilizing various open-source projects to implement machine learning algorithms and train the assistant algorithm to recognize different types of voices, accents, and dialects. Through this project, the goal to use voice data from underrepresented groups to build a voice assistant that can recognize voices regardless of gender, race, or accent. Increasing the representation of women in the computer industry is important for the future of the industry. By representing women in the initial study of voice assistants, it can be shown that females play a vital role in the development of this technology. In line with related work, this project will use first-hand data from the college population and middle-aged adults to train voice assistant to combat gender bias.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube