Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bent Partitions, Vectorial Dual-Bent Functions and Partial Difference Sets (2301.00581v1)

Published 2 Jan 2023 in cs.IT, math.CO, and math.IT

Abstract: It is known that partial spreads is a class of bent partitions. In \cite{AM2022Be,MP2021Be}, two classes of bent partitions whose forms are similar to partial spreads were presented. In \cite{AKM2022Ge}, more bent partitions $\Gamma_{1}, \Gamma_{2}, \Gamma_{1}{\bullet}, \Gamma_{2}{\bullet}, \Theta_{1}, \Theta_{2}$ were presented from (pre)semifields, including the bent partitions given in \cite{AM2022Be,MP2021Be}. In this paper, we investigate the relations between bent partitions and vectorial dual-bent functions. For any prime $p$, we show that one can generate certain bent partitions (called bent partitions satisfying Condition $\mathcal{C}$) from certain vectorial dual-bent functions (called vectorial dual-bent functions satisfying Condition A). In particular, when $p$ is an odd prime, we show that bent partitions satisfying Condition $\mathcal{C}$ one-to-one correspond to vectorial dual-bent functions satisfying Condition A. We give an alternative proof that $\Gamma_{1}, \Gamma_{2}, \Gamma_{1}{\bullet}, \Gamma_{2}{\bullet}, \Theta_{1}, \Theta_{2}$ are bent partitions. We present a secondary construction of vectorial dual-bent functions, which can be used to generate more bent partitions. We show that any ternary weakly regular bent function $f: V_{n}{(3)}\rightarrow \mathbb{F}_{3}$ ($n$ even) of $2$-form can generate a bent partition. When such $f$ is weakly regular but not regular, the generated bent partition by $f$ is not coming from a normal bent partition, which answers an open problem proposed in \cite{AM2022Be}. We give a sufficient condition on constructing partial difference sets from bent partitions, and when $p$ is an odd prime, we provide a characterization of bent partitions satisfying Condition $\mathcal{C}$ in terms of partial difference sets.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.