Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Explanations for Video Action Recognition (2301.00436v3)

Published 1 Jan 2023 in cs.CV, cs.AI, and cs.LG

Abstract: To interpret deep neural networks, one main approach is to dissect the visual input and find the prototypical parts responsible for the classification. However, existing methods often ignore the hierarchical relationship between these prototypes, and thus can not explain semantic concepts at both higher level (e.g., water sports) and lower level (e.g., swimming). In this paper inspired by human cognition system, we leverage hierarchal information to deal with uncertainty: When we observe water and human activity, but no definitive action it can be recognized as the water sports parent class. Only after observing a person swimming can we definitively refine it to the swimming action. To this end, we propose HIerarchical Prototype Explainer (HIPE) to build hierarchical relations between prototypes and classes. HIPE enables a reasoning process for video action classification by dissecting the input video frames on multiple levels of the class hierarchy, our method is also applicable to other video tasks. The faithfulness of our method is verified by reducing accuracy-explainability trade off on ActivityNet and UCF-101 while providing multi-level explanations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sadaf Gulshad (11 papers)
  2. Teng Long (33 papers)
  3. Nanne van Noord (22 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.