Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Trojaning semi-supervised learning model via poisoning wild images on the web (2301.00435v1)

Published 1 Jan 2023 in cs.CY

Abstract: Wild images on the web are vulnerable to backdoor (also called trojan) poisoning, causing machine learning models learned on these images to be injected with backdoors. Most previous attacks assumed that the wild images are labeled. In reality, however, most images on the web are unlabeled. Specifically, we study the effects of unlabeled backdoor images under semi-supervised learning (SSL) on widely studied deep neural networks. To be realistic, we assume that the adversary is zero-knowledge and that the semi-supervised learning model is trained from scratch. Firstly, we find the fact that backdoor poisoning always fails when poisoned unlabeled images come from different classes, which is different from poisoning the labeled images. The reason is that the SSL algorithms always strive to correct them during training. Therefore, for unlabeled images, we implement backdoor poisoning on images from the target class. Then, we propose a gradient matching strategy to craft poisoned images such that their gradients match the gradients of target images on the SSL model, which can fit poisoned images to the target class and realize backdoor injection. To the best of our knowledge, this may be the first approach to backdoor poisoning on unlabeled images of trained-from-scratch SSL models. Experiments show that our poisoning achieves state-of-the-art attack success rates on most SSL algorithms while bypassing modern backdoor defenses.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube