Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge-Based Dataset for Training PE Malware Detection Models (2301.00153v1)

Published 31 Dec 2022 in cs.CR

Abstract: Ontologies are a standard for semantic schemata in many knowledge-intensive domains of human interest. They are now becoming increasingly important also in areas until very recently dominated by subsymbolic representations and machine-learning-based data processing. One such area is information security, and more specifically malware detection. We propose PE Malware Ontology that offers a reusable semantic schema for Portable Executable (PE, Windows binary format) malware files. The ontology was inspired by the structure of the data in the EMBER dataset and it currently covers the data intended for static malware analysis. With this proposal, we hope to achieve: a) a unified semantic representation for PE malware datasets that are available or will be published in the future; (b) applicability of symbolic, neural-symbolic, or otherwise explainable approaches in the PE Malware domain that may lead to improved interpretability of results which may now be characterized by the terms defined in the ontology; and (c)by joint publishing of semantically treated EMBER data, including fractional datasets, also improved reproducibility of experiments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.