Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian statistical learning using density operators (2212.14715v2)

Published 28 Dec 2022 in math.ST, cs.LG, quant-ph, and stat.TH

Abstract: This short study reformulates the statistical Bayesian learning problem using a quantum mechanics framework. Density operators representing ensembles of pure states of sample wave functions are used in place probability densities. We show that such representation allows to formulate the statistical Bayesian learning problem in different coordinate systems on the sample space. We further show that such representation allows to learn projections of density operators using a kernel trick. In particular, the study highlights that decomposing wave functions rather than probability densities, as it is done in kernel embedding, allows to preserve the nature of probability operators. Results are illustrated with a simple example using discrete orthogonal wavelet transform of density operators.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube