Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Differentiating Student Feedbacks for Knowledge Tracing (2212.14695v2)

Published 16 Dec 2022 in cs.CY, cs.AI, and cs.LG

Abstract: Knowledge tracing (KT) is a crucial task in computer-aided education and intelligent tutoring systems, predicting students' performance on new questions from their responses to prior ones. An accurate KT model can capture a student's mastery level of different knowledge topics, as reflected in their predicted performance on different questions. This helps improve the learning efficiency by suggesting appropriate new questions that complement students' knowledge states. However, current KT models have significant drawbacks that they neglect the imbalanced discrimination of historical responses. A significant proportion of question responses provide limited information for discerning students' knowledge mastery, such as those that demonstrate uniform performance across different students. Optimizing the prediction of these cases may increase overall KT accuracy, but also negatively impact the model's ability to trace personalized knowledge states, especially causing a deceptive surge of performance. Towards this end, we propose a framework to reweight the contribution of different responses based on their discrimination in training. Additionally, we introduce an adaptive predictive score fusion technique to maintain accuracy on less discriminative responses, achieving proper balance between student knowledge mastery and question difficulty. Experimental results demonstrate that our framework enhances the performance of three mainstream KT methods on three widely-used datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube