Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

$(1-ε)$-Approximate Maximum Weighted Matching in Distributed, Parallel, and Semi-Streaming Settings (2212.14425v2)

Published 29 Dec 2022 in cs.DC and cs.DS

Abstract: The maximum weighted matching (MWM) problem is one of the most well-studied combinatorial optimization problems in distributed graph algorithms. Despite a long development on the problem, and the recent progress of Fischer, Mitrovic, and Uitto [FMU22] who gave a $\text{poly}(1/\epsilon, \log n)$-round algorithm for obtaining a $(1-\epsilon)$-approximate solution for unweighted maximum matching, it had been an open problem whether a $(1-\epsilon)$-approximate MWM can be obtained in $\text{poly}(1/\epsilon, \log n)$ rounds in the CONGEST model. Algorithms with such running times were only known for special graph classes such as bipartite graphs [AKO18] and minor-free graphs [CS22]. For general graphs, the previously known algorithms require exponential in $(1/\epsilon)$ rounds for obtaining a $(1-\epsilon)$-approximate solution [FFK21] or achieve an approximation factor of at most 2/3 [AKO18]. In this work, we settle this open problem by giving a deterministic $\text{poly}(1/\epsilon, \log n)$-round algorithm for computing a $(1-\epsilon)$-approximate MWM for general graphs in the CONGEST model. Our proposed solution extends the algorithm of Fischer, Mitrovic, and Uitto [FMU22], blends in the sequential algorithm from Duan and Pettie [DP14] and the work of Faour, Fuchs, and Kuhn [FFK21]. Interestingly, this solution also implies a CREW PRAM algorithm with $\text{poly}(1/\epsilon, \log n)$ span using only $O(m)$ processors. In addition, with the reduction from Gupta and Peng [GP13], we further obtain a semi-streaming algorithm with $\text{poly}(1/\epsilon)$ passes. When $\epsilon$ is smaller than a constant $o(1)$ but at least $1/\log{o(1)} n$, our algorithm is more efficient than both Ahn and Guha's $\text{poly}(1/\epsilon, \log n)$-passes algorithm [AG13] and Gamlath, Kale, Mitrovic, and Svensson's $(1/\epsilon){O(1/\epsilon2)}$-passes algorithm [GKMS19].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.