Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Robust Bayesian Subspace Identification for Small Data Sets (2212.14132v1)

Published 29 Dec 2022 in eess.SY, cs.SY, and stat.ML

Abstract: Model estimates obtained from traditional subspace identification methods may be subject to significant variance. This elevated variance is aggravated in the cases of large models or of a limited sample size. Common solutions to reduce the effect of variance are regularized estimators, shrinkage estimators and Bayesian estimation. In the current work we investigate the latter two solutions, which have not yet been applied to subspace identification. Our experimental results show that our proposed estimators may reduce the estimation risk up to $40\%$ of that of traditional subspace methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube