Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data Augmentation using Transformers and Similarity Measures for Improving Arabic Text Classification (2212.13939v3)

Published 28 Dec 2022 in cs.CL, cs.AI, and cs.LG

Abstract: The performance of learning models heavily relies on the availability and adequacy of training data. To address the dataset adequacy issue, researchers have extensively explored data augmentation (DA) as a promising approach. DA generates new data instances through transformations applied to the available data, thereby increasing dataset size and variability. This approach has enhanced model performance and accuracy, particularly in addressing class imbalance problems in classification tasks. However, few studies have explored DA for the Arabic language, relying on traditional approaches such as paraphrasing or noising-based techniques. In this paper, we propose a new Arabic DA method that employs the recent powerful modeling technique, namely the AraGPT-2, for the augmentation process. The generated sentences are evaluated in terms of context, semantics, diversity, and novelty using the Euclidean, cosine, Jaccard, and BLEU distances. Finally, the AraBERT transformer is used on sentiment classification tasks to evaluate the classification performance of the augmented Arabic dataset. The experiments were conducted on four sentiment Arabic datasets: AraSarcasm, ASTD, ATT, and MOVIE. The selected datasets vary in size, label number, and unbalanced classes. The results show that the proposed methodology enhanced the Arabic sentiment text classification on all datasets with an increase in F1 score by 4% in AraSarcasm, 6% in ASTD, 9% in ATT, and 13% in MOVIE.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.