Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks (2212.13848v2)

Published 28 Dec 2022 in cs.LG and stat.ML

Abstract: We explore the ability of overparameterized shallow ReLU neural networks to learn Lipschitz, nondifferentiable, bounded functions with additive noise when trained by Gradient Descent (GD). To avoid the problem that in the presence of noise, neural networks trained to nearly zero training error are inconsistent in this class, we focus on the early-stopped GD which allows us to show consistency and optimal rates. In particular, we explore this problem from the viewpoint of the Neural Tangent Kernel (NTK) approximation of a GD-trained finite-width neural network. We show that whenever some early stopping rule is guaranteed to give an optimal rate (of excess risk) on the Hilbert space of the kernel induced by the ReLU activation function, the same rule can be used to achieve minimax optimal rate for learning on the class of considered Lipschitz functions by neural networks. We discuss several data-free and data-dependent practically appealing stopping rules that yield optimal rates.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.