Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Users really do respond to smishing (2212.13312v1)

Published 26 Dec 2022 in cs.CR

Abstract: Text phish messages, referred to as Smishing is a type of social engineering attack where fake text messages are created, and used to lure users into responding to those messages. These messages aim to obtain user credentials, install malware on the phones, or launch smishing attacks. They ask users to reply to their message, click on a URL that redirects them to a phishing website, or call the provided number. Thousands of mobile users are affected by smishing attacks daily. Drawing inspiration by the works of Tu et al. (USENIX Security, 2019) on Robocalls and Tischer et al. (IEEE Symposium on Security and Privacy, 2016) on USB drives, this paper investigates why smishing works. Accordingly, we designed smishing experiments and sent phishing SMSes to 265 users to measure the efficacy of smishing attacks. We sent eight fake text messages to participants and recorded their CLICK, REPLY, and CALL responses along with their feedback in a post-test survey. Our results reveal that 16.92% of our participants had potentially fallen for our smishing attack. To test repeat phishing, we subjected a set of randomly selected participants to a second round of smishing attacks with a different message than the one they received in the first round. As a result, we observed that 12.82% potentially fell for the attack again. Using logistic regression, we observed that a combination of user REPLY and CLICK actions increased the odds that a user would respond to our smishing message when compared to CLICK. Additionally, we found a similar statistically significant increase when comparing Facebook and Walmart entity scenario to our IRS baseline.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: