Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Codes from additive constacyclic codes over a mixed alphabet and the MacWilliams identities (2212.13169v1)

Published 26 Dec 2022 in cs.IT and math.IT

Abstract: Let $\mathbb{Z}_p$ be the ring of integers modulo a prime number $p$ where $p-1$ is a quadratic residue modulo $p$. This paper presents the study of constacyclic codes over chain rings $\mathcal{R}=\frac{\mathbb{Z}_p[u]}{\langle u2\rangle}$ and $\mathcal{S}=\frac{\mathbb{Z}_p[u]}{\langle u3\rangle}$. We also study additive constacyclic codes over $\mathcal{R}\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S}$ using the generator polynomials over the rings $\mathcal{R}$ and $\mathcal{S},$ respectively. Further, by defining Gray maps on $\mathcal{R}$, $\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S},$ we obtain some results on the Gray images of additive codes. Then we give the weight enumeration and MacWilliams identities corresponding to the additive codes over $\mathbb{Z}_p\mathcal{R}\mathcal{S}$. Finally, as an application of the obtained codes, we give quantum codes using the CSS construction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Indibar Debnath (4 papers)
  2. Ashutosh Singh (47 papers)
  3. Om Prakash (55 papers)
  4. Abdollah Alhevaz (1 paper)

Summary

We haven't generated a summary for this paper yet.