Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

FAIR: Towards Impartial Resource Allocation for Intelligent Vehicles with Automotive Edge Computing (2212.12858v1)

Published 25 Dec 2022 in cs.NI

Abstract: The emerging vehicular connected applications, such as cooperative automated driving and intersection collision warning, show great potentials to improve the driving safety, where vehicles can share the data collected by a variety of on-board sensors with surrounding vehicles and roadside infrastructures. Transmitting and processing this huge amount of sensory data introduces new challenges for automotive edge computing with traditional wireless communication networks. In this work, we address the problem of traditional asymmetrical network resource allocation for uplink and downlink connections that can significantly degrade the performance of vehicular connected applications. An end-to-end automotive edge networking system, FAIR, is proposed to provide fast, scalable, and impartial connected services for intelligent vehicles with edge computing, which can be applied to any traffic scenes and road topology. The core of FAIR is our proposed symmetrical network resource allocation algorithm deployed at edge servers and service adaptation algorithm equipped on intelligent vehicles. Extensive simulations are conducted to validate our proposed FAIR by leveraging real-world traffic dataset. Simulation results demonstrate that FAIR outperforms existing solutions in a variety of traffic scenes and road topology.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube