Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Novel SOC Estimation for Hybrid Energy Pack using Deep Learning (2212.12607v1)

Published 23 Dec 2022 in cs.CE, cs.LG, cs.SY, and eess.SY

Abstract: Estimating the state of charge (SOC) of compound energy storage devices in the hybrid energy storage system (HESS) of electric vehicles (EVs) is vital in improving the performance of the EV. The complex and variable charging and discharging current of EVs makes an accurate SOC estimation a challenge. This paper proposes a novel deep learning-based SOC estimation method for lithium-ion battery-supercapacitor HESS EV based on the nonlinear autoregressive with exogenous inputs neural network (NARXNN). The NARXNN is utilized to capture and overcome the complex nonlinear behaviors of lithium-ion batteries and supercapacitors in EVs. The results show that the proposed method improved the SOC estimation accuracy by 91.5% on average with error values below 0.1% and reduced consumption time by 11.4%. Hence validating both the effectiveness and robustness of the proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.