Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Relational Local Explanations (2212.12374v2)

Published 23 Dec 2022 in cs.LG

Abstract: The majority of existing post-hoc explanation approaches for machine learning models produce independent, per-variable feature attribution scores, ignoring a critical inherent characteristics of homogeneously structured data, such as visual or text data: there exist latent inter-variable relationships between features. In response, we develop a novel model-agnostic and permutation-based feature attribution approach based on the relational analysis between input variables. As a result, we are able to gain a broader insight into the predictions and decisions of machine learning models. Experimental evaluations of our framework in comparison with state-of-the-art attribution techniques on various setups involving both image and text data modalities demonstrate the effectiveness and validity of our method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.